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SUMMARY

We analyze whole-genome sequencing data from
141,431 Chinese women generated for non-invasive
prenatal testing (NIPT). We use these data to charac-
terize the population genetic structure and to investi-
gategenetic associationswithmaternal and infectious
traits. We show that the present day distribution
of alleles is a function of both ancient migration and
very recent population movements. We reveal novel
phenotype-genotype associations, including several
replicated associations with height and BMI, an
association between maternal age and EMB, and be-
tween twin pregnancy and NRG1. Finally, we identify
a unique pattern of circulating viral DNA in plasma
with high prevalence of hepatitis B and other clinically
relevant maternal infections. A GWAS for viral infec-
tions identifiesanexceptionallystrongassociationbe-
tween integrated herpesvirus 6 and MOV10L1, which
affects piwi-interacting RNA (piRNA) processing and
PIWI protein function. These findings demonstrate
the great value and potential of accumulating NIPT
data for worldwide medical and genetic analyses.

INTRODUCTION

Sufficient large sample size is of fundamental importance

in resolving biological questions in population and medical
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genetics. Given a fixed budget, sample size tends to play a more

essential role compared to sequencing depth (Li et al., 2011).

Previous studies have demonstrated that sequencing many indi-

viduals at a low depth generally provides a better representation

of population genetic variation compared to sequencing a more

limited number of individuals at a higher depth (Fumagalli, 2013).

Furthermore, when using proper imputation techniques, even

sequencing at an average depth of <0.13 in a large enough

cohort can be a cost-effective strategy for detecting genetic as-

sociations for complex traits (Pasaniuc et al., 2012).

Several large-scale national and international sequencing pro-

jects have been carried out in the past decade with sample sizes

limited to tens of thousands (Auton et al., 2015; Francioli et al.,

2014; Gudbjartsson et al., 2015; Maretty et al., 2017; Walter

et al., 2015). Increasing the sample sizes of these studies is ama-

jor financial and logistical challenge. However, non-invasive pre-

natal testing (NIPT) for fetal trisomy—by sequencing of maternal

plasma cell-free DNA (cfDNA) (Zhang et al., 2015)—has become

the fastest adopted molecular test in history and provide an un-

tapped resource for understanding population genetic variation

and its associations with phenotypes. To date, over ten millions

of NIPT tests have been carried out globally, among which 70%

were conducted on Chinese women. These samples can be

leveraged for population genetic investigations of population his-

tory, large-scale genetic association studies, and viral screening

if the technical issues regarding the use of very large, very low

depth (0.063–0.13) samples can be addressed.

Here, we analyze NIPT sequencing data of 141,431 pregnant

women with informed consent. We demonstrate that allele fre-

quencies can be estimated with high accuracy, allowing further

population genetic analyses. We also show that efficient geno-

type imputation is feasible and can provide considerable map-

ping power. We use the data to carry out the hitherto largest

analysis of population genetic variation in the Chinese popula-

tion, perform a genome-wide association study (GWAS) on mul-

tiple traits in pregnant Chinese women, and survey the distribu-

tion of circulating viral DNA in the maternal plasma.

RESULTS

Study Participants and Chromosomal Coverage
The 141,431 participants were recruited from 31 out of the

34 administrative divisions in China (Figure S1A). Each individual

was sequenced using 5–10 million single-end reads (35–49 bp),

corresponding to a sequencing depth of 0.063 to 0.13 per

individual (Figure S1B). The reads were aligned to the hg19

reference using bwa10 (see STARMethods) with a resulting com-

bined read depth distribution that is approximately Poisson and

closely follows that expected from the ENCODE mappability

track (Figures S1C and S1D). Based on read length and

observed depth distribution, we identified regions of the genome

accessible to high-confidence mapping in the NIPT data, result-

ing in a total length of around a 2.13 billion base pair accessible

genome (75% of the non-N human reference genome

sequence). We also re-sequenced DNA derived from white

blood cells of 40 participants to a mean depth of 153. These

data were used in the variant calling and genotype imputation

evaluation.
348 Cell 175, 347–359, October 4, 2018
Amount of Genetic Variations and Accuracy of Genotype
Imputation
Previous standard methods for allele frequency estimation and

joint SNP calling, such as those implemented in GATK (DePristo

et al., 2011) and Samtools (Li, 2011), did not scale up to sample

sizes over a hundred thousand. Therefore, we developed a new

method for fast maximum likelihood estimation of allele fre-

quencies and joint SNP calling using a likelihood ratio test

(STAR Methods). Using this method for initial screening, we

identified 32.5 million bi-allelic candidate SNPs (Table S1). After

recalibration using a Gaussian mixture model, we identified a

final call set of 9.04 million single nucleotide variants with a tran-

sition/transversion ratio of 2.2 for known variants and 2.4 for

novel variants, respectively (Figure S2A), consistent with those

obtained for 1000 Genomes Project (1KG) variants (Auton

et al., 2015). 81.7% of the variants were called in the 1KG

Han Chinese individuals (Auton et al., 2015), �16% of the vari-

ants were in the remainder of 1KG or dbSNP database, while

233,966 (2.6%) were novel variants (Figure 1A). 90% of the var-

iants were found in the union of the gnomAD East Asian (Lek

et al., 2016) and 1KG Han Chinese call sets (Figure 1B). Using

experimental validation, we estimated an upper bound for

the false-positive rate (FPR) of SNP calling of 0.2% (Figures

S2B–S2E). However, among novel variants, the FPR was

�0.32. These SNPs comprised a small proportion of the total

number of SNPs, but did include common variants, likely due

to unresolved mapping issues. The squared correlation coeffi-

cient (R2) of the frequency of the non-reference allele (i.e., alter-

native allele estimated in our study and that computed in the

1KG Han Chinese) was 0.98 (Figure 1C).

We subsequently imputed genotypes of 8.9 million known var-

iable DNA sites with allele frequency >0.01 using the 1KG Han

Chinese as a reference panel (Davies et al., 2016) (STAR

Methods). To estimate imputation accuracy, we compared the

squared correlation coefficient (R2) between the genotypes

called in the medium coverage whole genome sequencing

data of the 40 individuals (MC set, 153) and the imputed geno-

types in the low-coverage data (LC set). 2.13 million of the vari-

ants werewell imputedwith an info score >0.4, andwith a p value

from a chi-square test of Hardy-Weinberg equilibrium larger

than 10�6. The mean imputation accuracy of those variants

was 0.89, while it was 0.71 for all variants combined (Figure 1D).

The imputation accuracy was negatively correlated to the frac-

tion of fetal DNA present in the plasma but the effect was not

very pronounced (Figure S2F).

Population Structure, Recent Population History, and
Genetic Adaptations
Even though the Chinese is the world’s largest population that

comprises 1.4 billion people, it is perhaps surprisingly under-

studied with respect to population genetic history. We applied

information of the 141,431 pregnant women regarding digital

geographic location and self-reported ethnicity to the study of

the genetic variation in China at multiple timescales. Because

of the uncertainty in genotype calling, we conduct all population

genetic analyses using methods that either sample a single read

per individual or use maximum likelihood estimates of allele fre-

quencies without relying on genotype imputation.
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Figure 1. Allele Frequency Spectrum and

Imputation Accuracy of the 141,431 Humans

(A) Allele frequency spectrum of known and novel

variants.

(B) Sharing of variants among NIPT calls (CMDB,

n = 141,431), gnomAD East Asian (gnomAD EAS,

n = 811), and the Han Chinese population from the

1000 Genome Project (CHN, n = 301).

(C) Comparison of frequency of the non-reference

allele between the NIPT estimations (CMDB) and

Han Chinese estimations in the 1000 genomes

project (CHN).

(D) Count and imputation accuracy of the known

variants as a function of minor allele frequency in-

tervals. The 2.1 million known variants are restricted

to those with an imputation info score >0.4 and a

test p value of Hardy Weinberg equilibrium fre-

quencies of >10�6. The error bar in red denotes the

97.5% confidence interval, which is generally very

small.

See also Figures S1 and S2 and Table S1.
A principal component analysis of all the 141,431 participants

suggested that the first three principal components reflected

sequencing read length, latitudinal genetic differentiation, and

the sequencing error rate (Figures S3A–S3D). After removing

participants with 49bp read length and with sequencing error

rate >0.00325, a principal component analysis of 45,387 self-re-

ported Han Chinese from the 31 administrative divisions showed

that the greatest differentiation of Han Chinese is along a latitudi-

nal gradient (Figures S3E and S3F), consistent with previous

studies (Chen et al., 2009; Xu et al., 2009). In contrast, there is,

perhaps surprisingly, very little differentiation from East to West.

This observationmay be explained by the fact that a large propor-

tionof thewesternHanpopulations inChinaare recent immigrants

organized by the central government starting from 1949 when the

People’s Republic of China was founded (Liang andWhite, 1996).

While the Han Chinese were found to be relatively genetically

homogeneous, there was greater divergence among the minority

ethnic groups for both latitude and longitude (Figures 2A and 2B).

The most differentiated ethnic groups are the Turkic speaking

Uyghur and Kazakhs, who reside in the Xinjiang province, and

the Mongols residing primarily in Inner Mongolia. The Xibe,

Tibetans, and Hui from central China, the Yi from southwestern

China, and the Zhuang and Buyi minorities from southern China,

also differ substantially from the Han Chinese that come from

the same area. On the other hand, the Manchu from northeastern

China were genetically closest to the Han Chinese in that area,

consistent with historical accounts (Rhoads, 2000).
We further explored the patterns of allele

sharing between Han Chinese and major

global ethnic groups using private alleles

defined from the 1KG populations and us-

ing outgroup F3 statistics (Peter, 2016)

(STARMethods). In the northwest and cen-

tralwest,weobservedprivate allele sharing

with the1KGEuropeanCentral Europeanof

Utah (CEU) panel both for individuals self-

identified as Han Chinese and for individ-
uals self-identified as belonging to a minority group. The stron-

gest level of private allele sharing with the CEU was observed

for people in themost northwest provinces of Xinjiang andGansu

(Figure 2C), likely reflecting the Turkic speaking ancestry in these

minorities. When only the Han Chinese were included, the stron-

gest level of allele sharing with Europeans was observed for peo-

ple in the Qinghai, Gansu, and Ningxia provinces (Figure 2D).

These provinces are located in the Hexi corridor, themost impor-

tant commercial hub on the Silk Road connecting China to the

west since the establishment of the Han Dynasty (206 BC)

(Yang et al., 2008). Thus, one potential explanation for the West-

ern ancestry observed in these provinces is gene flow related to

their location on the Silk Road. We also observed a pattern of

increased allele sharing with the 1KG Indian ITU reference panels

in southwestern populations from Xinjiang, Tibet, Yunnan,

Guangxi, and Hainan provinces (Figures 2E and 2F), consistent

with their geographic proximity to the Indian subcontinent (Yang

et al., 2017). Analysesbasedon the F3 statistic aremostly consis-

tent for the CEU analysis, but for the ITU analysis, we also

showhigh affinity between theHanChinese in northern provinces

and the ITU, likely due to the shared ancestry of the CEU and ITU

populations. Furthermore,we applied the F3 statistic to learn pat-

ternsof allele sharingbetween theChineseprovincial populations

and 1KGP neighbor populations including three Chinese popula-

tions, the Japanese, and theVietnamese.Weobserveapatternof

allele sharing among the 33 administrative divisions reflecting the

geographical origin of the 1KGP populations (Figures S3G–S3K).
Cell 175, 347–359, October 4, 2018 349
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Figure 2. Population Structure and Distribution of Allele Sharing with Related Populations in 1KGP

(A) Geographical distribution of the 36 minorities. Size of the circle reflects the number of minority individuals.

(B) Principal component analysis of the 36minorities. A random selection of an equal number of Han Chinesematching the same city of eachminority are included

and shown as gray colors. English names of the minorities and the number of randomly selected participants from each ethnic and geographical groups from

96,880 participants after QC on error rate and read length are shown in the legend.

(C and D) Private allele sharing between each administrative division for all ethnic groups (C) or only the Han (D) and the CEU and ITU reference populations.

(E and F) Private alleles sharing between each administrative division for all ethnic groups (E) or only the Han (F) and the ITU reference populations in the 1KGP.

Color corresponds to the private allele frequency defined in the main text (i.e., the frequency of sampling an allele from each division that is private to reference

CEU or ITU populations).

See also Figure S3.
Interestingly, we found that the CHB, although annotated as the

Han Chinese from Beijing, did not have the closest affinity with

Beijing individuals but tended to be closer to populations in the

coastal provinces: Shandong, Zhejiang, Jiangsu, Fujian, and

Jiangxi (Figure S3G). This likely reflects the recent multiethnic

migration into Beijing consistent with the demographic informa-

tion available for our samples.We also investigated the inter-pro-

vincial allele sharing between Han Chinese in the Chinese admin-

istrativedivisions.Thedifference in f3 statistic amongprovinces is

very small, but all southern provinces show more genetic affinity

with other southern coastal provinces, while northern provinces

associate with northern coastal provinces (results not shown).

This observation likely reflects a combination of internalmigration

events organized by the central government since 1949 (Liang

and White, 1996) and the country’s oriented movement of labor
350 Cell 175, 347–359, October 4, 2018
from the interior to the coastal areas since 1979 (Liang and

Ma, 2004).

We inferred selection within Han Chinese populations using

two approaches. First, we identified variants with significant dif-

ferentiation along each PC compared to a null distribution ex-

pected under a model of genetic drift (STAR Methods). Second,

we conducted a scan of the rarer but more important pathogenic

variants in the Clinvar database (Landrum et al., 2014) by statisti-

cally comparing allele frequency differences of those loci among

North, Central and South Han Chinese against a null distribution

generated from the genome-wide data. In the PC scan, we iden-

tified six loci showing genome-wide significance across latitude:

LILRA3, CR1, FADS2, DOCK9, ABCC11, and a cluster of IGH

genes (Figure 3A). The CR1, DOCK9, and the IGH genes display

a higher allele frequency in the south while the FADS2, ABCC11,



Figure 3. Genetic Adaptation in Han Chinese Population

(A) Manhattan plot showing the detected selection signals in Han Chinese population across the first principal component. VEP annotated names of the gene loci

under selection are displayed.

(B–G) Derived allele frequency per Chinese administrative division for the lead SNP in loci under selection across latitude. Shown is the derived allele frequency

distribution of the lead SNP in theCR1 loci (B), FADS2 loci (C), ELK2AP-MIR4507 loci corresponding to the IGH-gene cluster (D), ABCC11 loci (E),DOCK9 loci (F),

and LILRA3 loci (G) in (A). The number and the corresponding color in the legend and map indicate derived allele frequency estimated from NIPT data.

(H–O) Allele frequency per administrative division for the ClinVar pathogenic variants with a significant difference of allele frequencies across North, Central, and

South regions, including the ClinVar pathogenic varients associated with Meckel syndrome type 2 (H), complement component 9 deficiency (I), deafness (J),

deficiency of ferroxidase (K), Usher syndrome (L), albinism (M), non-syndromic genetic deafness (N), and G6PDCANTON (O). Number and color in the legend and

map represent allele frequency estimated from NIPT data for the risk allele recorded in the ClinVar database.

See also Tables S2 and S3.
and LILRA3 genes display a higher derived allele frequency in the

north (Figures 3B–3G; Table S1). Three of these loci are known to

be related to immune responses (the IGH genes, LILRA3 and

CR1). DOCK9 is associated with bipolar disease and has been
previously shown to under selection in East Asians (Suo et al.,

2012). FADS2 is a well-known target of selection associated

with changes in diet to, or from, a diet with a high content of an-

imal fat and has previously been inferred to have been targeted
Cell 175, 347–359, October 4, 2018 351



Figure 4. Genome-wide Significant Signals

for Two Common Quantitative Traits and

Two Traits Related to Reproductive Process

Known loci, defined as significant variants with a

known association with the investigated trait in the

GWAS catalog (e90_r2017-10-10) within 1 Mbp

region are marked in black. Novel loci are marked

in red. For loci where the lead SNP is located in the

intergenic region, themost close genewas plotted.

Detailed information about the loci can be found in

Tables S5 and S6.

See also Figures S4 and S5 and Table S4.
by selection in Inuit (Fumagalli et al., 2015), South Asians (Kotha-

palli et al., 2016), Europeans (Buckley et al., 2017), and in Africa

(Mathias et al., 2012). Our results suggest more recent selection

has also been actingwithinChina. TheABCC11 locus is famously

associated with earwax type and has previously been shown to

be under selection in Asian, Native American, andEuropean pop-

ulations (Ohashi et al., 2011), and our results demonstrate that

this locus is also under differential selection within China. We

also investigated the geographical distribution of possibly patho-

genic variants compiled from the ClinVar dataset (Landrum et al.,

2014) as candidates for loci under selection. We calculated mea-

sures of allele frequency differentiation (Fisher’s exact test be-

tween northern, central, and southern Han Chinese, comparing

against a frequency-matched dataset of 100,000 SNPs chosen

at random) (STAR Methods). We identified and reported the

nine out of the 42,058 possibly pathogenic variants in eight genes

that display the most significant allele frequency difference

among the three geographical regions (Fisher exact test with

p value < 10�6, percentile p value < 5e�3) (Figures 3H–3O;

Table S2). Those SNPs include rs72554665, a polymorphic site

in G6PD, a gene associated with resistance to malaria (Nkhoma

et al., 2009). This variant has a higher frequency in southern

China, consistent with historically higher incidence rates of ma-

laria in southern China than in northern and central China.

Phenotype-Genotype Associations of Multiple Complex
Traits
In the following, we demonstrate that NIPT data can be used

effectively in GWAS. We first investigated associations with
352 Cell 175, 347–359, October 4, 2018
two common traits, height and BMI

among 61.7K individuals with both phe-

notypes recorded (Figures S4A and

S4B). We applied a score test (Skotte

et al., 2012) to test the association

between the traits and the genotype

probabilities for each of the previously

mentioned �2 million imputed variants,

incorporating covariates such as the first

to fifth principal components (Figure S3A),

maternal age, gestational age of the

fetus, fetus sex, etc. (STAR Methods).

The genomic control factor lambda for

height and BMI were 1.51 and 1.32,

respectively (QQ-plots in Figures S4C
and S4D). Due to the high polygenicity of the traits, we also eval-

uated inflation of our test statistics using linkage disequilibrium

(LD) score regression that did not show severe inflation (intercept

1.03, SE 0.03 and 1.10, SE 0.02, attenuation ratio 0.05, SE 0.04

and 0.24, SE 0.05 for height and BMI, respectively), suggesting

that confounding factors, such as population structure, were

generally well controlled (Table S4). The estimated SNP heritabil-

ity obtained from the LD score regression for height and BMI are

0.48 and 0.10, respectively. A comparison of the LD score

regression statistics between Giant, UK Biobank, and our study

can be found in Table S4. We note that strong inflation was

observed if covariates were not applied in the test model

(genomic control factor lambda for height and BMI are 9.71

and 2.68, respectively).

In total, 48 and 13 loci reached genome-wide significance for

association with height and BMI, respectively, at the classical

5 3 10�8 genome-wide significance level (Figures 4A and 4B;

Table 1). Forty-one of the height loci were previously reported,

although only 36 of them have previously been found in Asian

populations (MacArthur et al., 2017). Seven height loci located

in or around the genes UBQLN2, MIR325HG, MAST2, STRBP/

ZBTB26, C11orf24-LRP5, ARHGEF12, and LINC00261 have

not been previously reported (Figures S5A–S5F; Table 2). There

was one new signal in the intronic region of DNA2, a locus first

identified in GIANT (Wood et al., 2014) and another independent

signal in the nearby gene MYPN was reported (conditional

p value = 4.8e�8). Three BMI-associated loci in the genes

PLD5, TRPC6, and CBLN4 were also not previously reported

(Figures S5H–S5J; Table 2). We attempted to replicate the novel



Table 1. Replication Status of Height- and BMI-Associated Loci

Infoscorea Number of Variantsb Mean Rc Known Locid Novel Loci Known (Replicated jNotreplicated)e Novel (Replicated jNotreplicated)
Height

0.8 788,385 0.95 24 4 24j0 4j0
0.7 1,552,640 0.92 38 6 38j0 5j1
0.6 1,922,780 0.9 40 6 40j0 5j1
0.5 2,057,331 0.89 41 7 40j1 6j1
0.4 2,104,769 0.89 41 7 40j1 6j1
BMI

0.8 788,385 0.95 6 2 6j0 1j1
0.7 1,552,640 0.92 8 3 8j0 2j1
0.6 1,922,780 0.9 10 3 10j0 2j1
0.5 2,057,331 0.89 10 3 10j0 2j1
0.4 2,104,769 0.89 10 3 10j0 2j1
aInfo score is provided by STITCH that measures the ratio of the observed statistical information of the population allele frequency and the complete

information (see STAR Methods).
bNumber of variants refer to number of imputed variants with minor allele frequency >0.01 and p value of hardy Weinberg equilibrium test >10e�6.
cMean R2 refers to the true imputation accuracy comparing the imputed genotype dosage and the true genotypes of the 40 NIPT samples sequenced

to 153.
dLoci is defined as a 1Mbwindow extending 500 kbp at both the 50 and 30 ends centering on the snp with smallest p value in the window. Known refers

to the existence of one or more known SNPs in the GWAS catalog found within the 1 Mb window.
eReplicated refer to the number of loci that have p value <0.05 divided by the number of associated loci and same beta direction in any one of the CKB,

Giant, or UK Biobank test sets. Not replicated denotes the number of loci that are not replicated in all three test sets.
and known associations for height and BMI in 32,000 genotyped

Chinese participants from the China Kadoorie Biobank (CKB)

cohort (Chen et al., 2011) and in the results of the GIANT consor-

tia (Yengo et al., 2018) and the UKBiobank (BenNeale’s website,

see STAR Methods). When regressing the effect size of the

genome-wide significant variants in the three test sets including

CKB, Giant, and UK Biobank on the discovery set (i.e., the NIPT

result), we observed a higher regression slopes for the test set of

the same Chinese ancestry compared to the test sets of the

European ancestry for height (CKB, slope 0.88; Giant, slope

0.614; UK Biobank, slope 0.495) and BMI (CKB, slope 0.709;

Giant, slope 0.463; UK Biobank, slope 0.434), respectively

(Figures S4E–S4J). When comparing the beta direction and the

p value of the lead or proxy SNPs between the discovery and

test sets, in almost all cases the p values and the effect sizes

of the SNPs are similar (Tables 2, S5, and S6). Only one known

and one novel locus for height (FADS2 and LINC00261) and

one locus for BMI (TRPC6) failed to be replicated at the signifi-

cance level when correcting for multiple testing (p < 0.05 divided

by the number of test loci) in all the CKB and the GIANT/UK

Biobank analyses. However, the variant in FADS2 is nominally

significant in the CKB cohort with a p value of 0.002.

The height and BMI results provide a proof of concept for the

use of NIPT data in GWAS and suggest that NIPT data can be

used to investigate fertility and pregnancy related traits that

otherwise would be prohibitively difficult to investigate in such

large samples. To illustrate this, we investigated associations

for two novel traits: (1) maternal age, which is expected to corre-

late with female fertility broadly defined, butmay also be affected

by several other factors, and (2) twin pregnancy. The maternal

age distribution follows a bimodal distribution in the NIPT partic-

ipants (Figure S4K). Similarly to height and BMI, we again do not
observe any severe inflation when including covariates for both

maternal age (lambda = 1.29) and twin pregnancy (lambda =

1.06) (QQ plot see Figures S4L and S4M). Strong inflation was

also observed for these two traits if covariates were not applied

in the test model for maternal age (lambda = 1.88) and twin preg-

nancy (lambda = 1.36). We find one significant association peak

for maternal age located between the HCN1 and EMB loci

(rs16828019, p = 1.38E�11) (Figures 4 and S5K). This signal is

located near a previously identified association peak for age at

first birth, originally reported to be in the HCN1 gene (Barban

et al., 2016). Our lead SNP is closer in location to EMB gene

which encodes embigin, a transmembrane glycoprotein that is

preferentially expressed in the early stages of embryogenesis

and enhances integrin-mediated cell-substratum adhesion in

mice (Huang et al., 1993). It shows particularly high expression

during early post implantation embryogenesis and is therefore

a strong candidate gene for further studies of infertility in hu-

mans. In European countries, maternal age is associated with

education attainment, which is a proxy for intelligence (Barban

et al., 2016). We do not have records for education attainment

in our study. Whether education has an impact on maternal

age in the Chinese population requires further investigation.

Out of 137,646 individuals with ultrasound scans, 476

had more than one fetus (e.g., twins). The lead associated SNP

for this trait was located in the gene NRG1 (rs12056727,

p = 5.93E�9, odds ratio = 1.99) (Figures 4 and S5L) and is a

very strong expression quantitative trait locus (eQTL) for expres-

sion in the thyroid (effect size = 0.5, p value 1.2e�19) in the GTEx

database (Carithers and Moore, 2015). The tested allele T in-

creases the twinning probability and the NRG1 expression in

the thyroid. Furthermore, the SNP is associated with hyperthy-

roidism in the UK BioBank (Sudlow et al., 2015) (p = 1.7e�7,
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Table 2. Replication Statistics of the New Loci Associated with the Height and BMI Traits Found in NIPT

NIPT CKB Giant UK Biobank

Height

CHR GENE SNP MAF P Beta P Beta P Beta P Beta

X UBQLN2-LINC01420 rs7391861 0.34 1.00E�09 0.04 1.85E�07 0.04 NA NA NA NA

X MIR325HG-FGF16 rs4892720 0.21 5.67E�13 0.05 4.15E�06 0.04 NA NA NA NA

1 MAST2 rs7520050 0.35 4.18E�09 �0.04 0.01 �0.02 4.60E�23a �0.01a 3.49E�07 �0.01

9 STRBP rs10818797 0.33 1.41E�09 0.04 0.52 0.01 1.40E�14 0.02 9.08E�06 0.01

11 C11orf24-LRP5 rs450416 0.49 1.04E�08 0.04 0.09 0.01 1.10E�05a �0.01a 1.04E�07 0.01

11 ARHGEF12 rs894839 0.28 3.72E�08 �0.04 6.51E�08 �0.05 6.70E�04a �0.01a 1.57E�03 �0.01

20 LINC00261 rs1203887 0.04 4.07E�08 �0.09 0.02 �0.05 1.90E�03a 0.01b 0.90 0.003

BMI

1 PLD5-LINC01347 rs2780797 0.45 2.57E�08 0.04 0.01 0.02 2.10E�06 0.01 3.69E�03 0.01

11 LOC101054525-TRPC6 rs12803364 0.26 1.25E�09 �0.04 0.37 0.01 0.66 0.00 0.54 �0.003

20 LINC01441-CBLN4 rs59271815 0.16 3.24E�10 �0.05 2.39E�04 �0.04 3.60E�08a �0.01a 1.67E�05 �0.01

Information about the proxy SNP can be found in Tables S5 and S6. NA, no proxy SNP found.
aProxy SNP that have similar p value and effect size in NIPT.
odds ratio = 1.15). Thyroid function has previously been associ-

ated with fertility. The NRG1 gene has mostly been investigated

for its effects on behavior (schizophrenia in humans and

response to stress and anxiety in rodents), but at least one study

notes that matings between knockouts in mice have smaller litter

size (Britto et al., 2004). However, the exact reason for this is un-

known. More interestingly, twin pregnancies tend to be associ-

ated with lower levels of the thyroid-stimulating hormone (TSH)

(Soldin, 2006), consistent with the SNP association with hyper-

thyroidism, which generally involves increased thyroid hormone

levels and decreased TSH levels.

Circulating Viral DNA in Maternal Plasma
Despite its importance for public health, few studies have been

carried out on the distribution of viral DNA in blood plasma (the

virome) at the population level. However, the sequence technol-

ogies used in NIPT studies provide an untapped resource for

understanding viral epidemiology. We investigated the plasma

virome of 138,882 participants by querying reads that do not

align to the human genome against the NCBI viral sequence

database (Sayers et al., 2009) using BLAST (Altschul et al.,

1990) (STAR Methods). The plasma virome, cleaned for phages

and virus with low genome coverage (<10%), is represented in

Figures 5A and 5B, and all observed viruses, without removing

phage, can be found in Figures S6A–S6C. We examined

sequencing coverage to individual viruses to determine potential

misclassification or contamination, where prevalent viruses with

relatively even coverage support true virus identification (Fig-

ure S7). Most viruses detected have even sequence coverage,

while a few display localized peaks. To understand if these peaks

are related to human homology, we aligned viral reference se-

quences to the human reference genome, hg19 and non-EBV

decoys (Table S6). We found that only the localized peak of

HCV corresponds to a human homologous sequence, yet these

sequences are only found in a small number of our subjects

(n = 3). The peaks in coverage may represent highly conserved

areas of viruses, misclassification of human sequences, uneven
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production of viral DNA, select viral integration events, or intro-

duced viral DNA from vaccine. Further investigation and valida-

tion is required.

Interestingly, the blood virome in a recent study of Europeans

(Moustafa et al., 2017) appeared to have a different viral distribu-

tion compared to the pregnant Chinese women participants

analyzed in this study (Figure 5A). The use of differing

sequencing approaches is a challenge to direct comparisons,

but our participants were significantly enriched for hepatitis B vi-

rus (HBV) and Parvovirus B19 DNA and showed a lower preva-

lence of human herpesvirus 7 (HHV-7) DNA compared to Euro-

peans (Moustafa et al., 2017). The prevalence of HBV DNA

across Chinese populations estimated in our study is �2.5%

(with high mean abundance 25.6), which is less than the 9.8%

prevalence reported in a Chinese 2014 population survey of

HBV antibodies (IgM to HBV core antigen or surface antigen

[HBsAg+]) (Yan et al., 2014). These differences are likely due to

varying estimates derived from circulating HBV DNA versus

antibody prevalence, the enrichment of our sample for relatively

affluent younger women, and the late adoption of the HBV vac-

cine in China (since 1992) (Yan et al., 2014). We detected

3,421 participants for HBV DNA, yet 1,911 participants self-re-

ported some type of HBV infection. As expected, we have the

greatest sensitivity (78.7%) to detect reported active HBV infec-

tion (HBsAg+). Of 1,032 individuals reporting latent infection

(HBsAg�), we detected HBVDNA in 53 subjects, where the lower

sensitivity (5.1%) is likely due to low levels of circulating HBV

DNA during latent infection (Figure S6C). Interestingly, we de-

tected HBV DNA in 2,959 individuals who did not report any

HBV infection, suggesting an additional and potentially clinically

important use of NIPT where circulating HBV DNA is associated

with fetal transmission (Zou et al., 2012).

We detected many hits for human endogenous retrovirus K

(HERV-K) (prevalence, �2.1%; mean abundance, 0.22) which

was previously shown to be active, capable of expression in hu-

mans, and associated with HIV infection (Zwoli�nska et al., 2013).

All humans carry multiple copies of HERV-K in their genomes,



Figure 5. The Viral Spectrum in Maternal Plasma

(A) Prevalence of infection among the investigated population.

(B) Distribution of abundance by each virus. Each dot represents the abundance of one individual.

(C) Manhattan plot showing results from GWAS of carriers of high abundance ciHHV-6A/B versus non-carriers.

(D) Locus Zoom plot denotes lead snp (rs73185306) and the correlated snps around the region of MLC and MOV10L1 genes.

(E–G) Geographic distribution of prevalence for the three most prevalent virus (i.e., HBV, E; HERV-K113, F; and HHV6A/6B, G).
and the recovery of non-aligning HERV-K in a subset of subjects

may be the result of insertionally polymorphic HERV-K

(Wildschutte et al., 2016) or the result of co-option of HERV-K

sequences by other exogenous viruses. Herpesvirus 6A/B

(HHV-6A/B), the third most common viral group, has a preva-

lence of 0.8% (mean abundance, 0.48). HHV-6A/Bwere grouped

together due to high co-occurrence and potential for misclassi-
fication due to sequence homology. A distinct bimodal distribu-

tion clusters high abundance HHV-6A/B (abundance >10�0.5)

(Figure 5A), likely separating chromosomally integrated HHV-

6A/B (ciHHV-6A/B) from non-integrated circulating HHV-6A/B

as noted in previous studies (Moustafa et al., 2017). Human

herpesvirus 5 or cytomegalovirus (HHV-5 or CMV) is the fourth

most common infection with a prevalence of 0.40% (mean
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abundance, 0.03). This virus is of particular interest in pregnant

women as CMV is one of the leading causes of birth defects

(Cheeran et al., 2009). Parvovirus B19 has a prevalence of

0.39% (mean abundance, 1.68) and is of clinical relevance to

pregnant women as active infection can cause fetal anemia

and death.

To identify germline polymorphisms associated with viral

infections, we carried out an association study for each of the

major viruses, comparing infected individuals to a control group

of 90,531 participants who have no detectable virus in the NIPT

sequencing data. We identified an intronic variant, rs73185306,

in the MLC1-MOV10L1 region that is significantly associated

with the presence of high abundance ciHHV-6A/B (n = 653)

but not low abundance HHV-6A/B (n = 1,556) (odds ratio =

3.4, p value = 7.3e�66) (Figures 5B, 5C, S6E, and S6F).

rs73185306 is an eQTL for both MCL1 and MOV10L1 genes

suggesting a functional role (Lonsdale et al., 2013). To ensure

that this strong association was not due to alignment error

and homology in the MLC1-MOV10L1 region, we aligned

HHV-6A and HHV-6B genomes back to the human genome

and found no sequence homology in this genomic region (Table

S7). The MCL1 gene is involved in myeloid cell differentiation

and has been shown to be upregulated during herpesvirus

infection (CMV, EBV, and HHV-8). TheMOV10L1 gene is known

to be associated with platelet distribution (Astle et al., 2016) that

is also correlated with severity of hepatitis B infection (Karagoz

et al., 2014), although we found no association with circulating

HBV DNA. Intriguingly, MOV10L1 is a PIWI interacting RNA heli-

case that is active during spermatogenesis and functions as a

repressor of retrotransposons (Vourekas et al., 2015). We

suspect that the PIWI-interacting RNA represses HHV-6A/B

integration, and polymorphisms in this gene allow for more effi-

cient integration of HHV-6A/B during spermatogenesis. We

observed no other significant genome-wide SNP associations

with other viruses.

Finally, we explored the geographic distribution of detected

viruses in the studied population throughout China. We mapped

the prevalence of viral sequences among 30 administrative divi-

sions with more than 100 participants. Tibet was excluded

due to a small sample size of 13 individuals. We observed

different geographic patterns for viruses with occurrence sample

size >1,000 (Figures 5D–5F). We observed that HBV DNA in

serum has a higher prevalence in southern China compared to

central and northern China (Figure 5D), while previous studies

have shown higher HBV antibody prevalence in northern China

(Yan et al., 2014). We speculate that subgenotype resolution dif-

ferences in HBV may contribute to circulating DNA levels, a clin-

ically relevant predictor of fetal HBV transmission and tumor pro-

gression (Zou et al., 2012). We observed a similar geographic

distribution between HBV and HERV-K113 (Figure 5E). HERV-K

directly interacts with exogenous viruses such as HIV to reduce

the infectivity of the resulting chimeric virions (Zwoli�nska et al.,

2013). HERV-K-HBV co-option may explain the observed

geographic co-occurrence. Alternatively, apolio B RNA editing

catalytic component (APOBEC) mediated mutation of HERV-K

may increase during HBV infection leading to initial alignment

errors and subsequent classification by BLAST (Lee et al.,

2008; Vartanian et al., 2010).
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DISCUSSION

In this study, we develop statistical methods for analysis of NIPT

data and illustrate the utility of these data for population ge-

netics, association mapping studies, and studies of the human

plasma virome. Despite the low sequencing coverage, we

demonstrate that accurate genotype imputation is possible,

and we discover novel loci associated with height, BMI, and

two pregnancy-related traits. The results illustrate the power

and feasibility of association mapping using NIPT data.

We also leverage the data for population genetic inferences

and show that the majority Han Chinese have evidence of isola-

tion by distance latitudinally, but not longitudinally, presumably

due to recent population movements. In contrast, the genetic

diversity in ethnic minorities roughly mirrors geography. We

successfully identify known and novel loci that are under selec-

tion based on the small allele frequency differences in the

Han population. Finally, we identify circulating DNA of viruses

with clinical relevance in pregnancy (HBV, CMV, ParvoB19)

and reveal a different viral sequencing distribution spectrum

compared to Europeans. We analyze genetic and viromic

data together and reveal a highly significant association

between suspected ciHHV-6A/B and MOV10L1-MCL1 hinting

at a possible germline variant affecting the integration of

HHV-6A/B.

Our results illustrate the utility of NIPT data for medical genetic

studies, particularly for understanding traits related to fertility

and pregnancy. Furthermore, the availability of large samples

of shotgun DNA sequencing from blood opens up new avenues

for investigating hypotheses regarding interactions between vi-

ruses and host DNA genetic variability. As NIPT testing expands

to millions of individuals globally, obtaining informed consent for

patients and effective digital curation of medical records should

be prioritized by the medical community.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Sequencing and QC

B Medium depth sequencing of 40 participants

B Alignment of reads against hg19 and definition of

accessible region

B Variant discovery and allele frequency estimation

B Annotation

B Imputation

B Principal component analysis

B F3-statistic and private allele frequency analysis

B Detection of selection across PC coordinates

B Detection of clinvar pathogenic variants displaying sig-

nificant allele frequency differentiation

B Identification of genetic variants significantly associ-

ated with a trait



B Replication of significant loci

B Viral sequence analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Maximum likelihood estimation of allele frequency

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and seven tables and can be

found with this article online at https://doi.org/10.1016/j.cell.2018.08.016.

ACKNOWLEDGMENTS

We are grateful to all the participants and BGI colleagues participating in the

project. We thank China National GeneBank for computational support, Miao-

lan Cen from BGI for organising necessary experimental resources in the proj-

ect, Xiaofeng Wei for support on setting up the CMDB database, Dr. Heng Li

for useful discussions on development of the BaseVar to call SNP from NIPT

sequencing data, and Dr. Chuan Li for suggestions on structuring the manu-

script. Particularly, we would like to thank the professional technical support

service provided by Wei Lin, Ruibo Li, Li Tian, Jingren Zhou, Heshan Lin,

Changliang Xu, Shaoqing Dai, Qi Zhu, Tiecheng Dengfrom Alibaba Cloud

Corperation, and the supercomputing capabilities provided by Alibaba Cloud

MaxCompute and BatchCompute products that greatly shortened the

research process. We thank the Tianhe Supercomputer Center for computa-

tional support. This project was supported by the Natural Science Foundation

of Guangdong Province, China (2017A030306026), Funds for Distinguished

Young Scholar of South China University of China (2017JQ017), and Funds

for Industrial PhD by Innovation Fund Denmark (4135-00130B).

AUTHOR CONTRIBUTIONS

Conceptualization, X.X., R.N., X.J., A.A., S. Liu, J.S., M.M., Y.Y., and Jian

Wang; Methodology, S. Liu, A.A., S.H., R.N., S.S.F., R.W.D., T.K., A.K.,

M.A.Y., and Q.F.; Validation, R.G.W., K.L., Z. Chen, F.C., S. Liu, R.L., and

S.H.; Investigation, S. Liu, S.H., L.F., Y. Zhang, H.X., S. Li, Z. Cai, Y. Yuan.,

and Q.L.; Formal Analysis, S. Liu, S.H., Z.L., L.L., R.L., Y. Zhou, and J.J.; Re-

sources, Y. Yin, L. Zhao, H.Z., andW.W.; Data Curation, Q.L., Y. Yuan, H.Z., L.

Zhou, and JunWang;Writing –Original Draft, S. Liu;Writing – Review& Editing,

S. Liu, R.N., A.A., S.S.F., X.J., J.S., Z. Chen, H.Y., M.A.Y., and Q.F.; Visualiza-

tion, S. Liu, S.H., Z.L., L.L., R.L., Y. Zhou, and J.J.; Supervision, X.X., R.N., X.J.,

A.A., and Jian Wang; Project Administration, X.J., S.H., S. Liu, and F.C.; Fund-

ing Acquisition, X.J. and S. Liu.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: March 20, 2018

Revised: June 12, 2018

Accepted: August 8, 2018

Published: October 4, 2018

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic

local alignment search tool. J. Mol. Biol. 215, 403–410.

Astle, W.J., Elding, H., Jiang, T., Allen, D., Ruklisa, D., Mann, A.L., Mead, D.,

Bouman, H., Riveros-Mckay, F., Kostadima, M.A., et al. (2016). The allelic

landscape of human blood cell trait variation and links to common complex

disease. Cell 167, 1415–1429.

Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O.,

Marchini, J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R.; 1000 Ge-

nomes Project Consortium (2015). A global reference for human genetic vari-

ation. Nature 526, 68–74.
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J.J., Tropf,

F.C., Shen, X., Wilson, J.F., Chasman, D.I., Nolte, I.M., et al.; BIOS Con-

sortium; LifeLines Cohort Study (2016). Genome-wide analysis identifies

12 loci influencing human reproductive behavior. Nat. Genet. 48,

1462–1472.

Britto, J.M., Lukehurst, S., Weller, R., Fraser, C., Qiu, Y., Hertzog, P., and Bus-

field, S.J. (2004). Generation and characterization of neuregulin-2-deficient

mice. Mol. Cell. Biol. 24, 8221–8226.

Buckley, M.T., Racimo, F., Allentoft, M.E., Jensen, M.K., Jonsson, A., Huang,

H., Hormozdiari, F., Sikora, M., Marnetto, D., Eskin, E., et al. (2017). Selection

in Europeans on fatty acid desaturases associated with dietary changes. Mol.

Biol. Evol. 34, 1307–1318.

Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Patterson,

N., Daly, M.J., Price, A.L., and Neale, B.M.; Schizophrenia Working Group of

the Psychiatric Genomics Consortium (2015). LD Score regression distin-

guishes confounding from polygenicity in genome-wide association studies.

Nat. Genet. 47, 291–295.

Carithers, L.J., and Moore, H.M. (2015). The Genotype-Tissue Expression

(GTEx) Project. Biopreserv. Biobank. 13, 307–308.

Cheeran, M.C.J., Lokensgard, J.R., and Schleiss, M.R. (2009). Neuropatho-

genesis of congenital cytomegalovirus infection: disease mechanisms and

prospects for intervention. Clin. Microbiol. Rev. 22, 99–126.

Chen, J., Zheng, H., Bei, J.X., Sun, L., Jia, W.H., Li, T., Zhang, F., Seielstad, M.,

Zeng, Y.X., Zhang, X., and Liu, J. (2009). Genetic structure of the Han Chinese

population revealed by genome-wide SNP variation. Am. J. Hum. Genet. 85,

775–785.

Chen, Z., Chen, J., Collins, R., Guo, Y., Peto, R., Wu, F., and Li, L.; China

Kadoorie Biobank (CKB) collaborative group (2011). China Kadoorie Biobank

of 0.5 million people: survey methods, baseline characteristics and long-

term follow-up. Int. J. Epidemiol. 40, 1652–1666.

Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li,

Z., et al. (2018). SOAPnuke: A MapReduce acceleration-supported software

for integrated quality control and preprocessing of high-throughput

sequencing data. Gigascience 7, 1–6.

Davies, R.W., Flint, J., Myers, S., and Mott, R. (2016). Rapid genotype imputa-

tion from sequence without reference panels. Nat. Genet. 48, 965–969.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C.,

Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A frame-

work for variation discovery and genotyping using next-generation DNA

sequencing data. Nat. Genet. 43, 491–498.

Francioli, L.C., Menelaou, A., Pulit, S.L., Van Dijk, F., Palamara, P.F., Elbers,

C.C., Neerincx, P.B.T., Ye, K., Guryev, V., Kloosterman, W.P., et al.; Genome

of the Netherlands Consortium (2014). Whole-genome sequence variation,

population structure and demographic history of the Dutch population. Nat.

Genet. 46, 818–825.

Fumagalli, M. (2013). Assessing the effect of sequencing depth and sample

size in population genetics inferences. PLoS ONE 8, e79667.

Fumagalli, M., Moltke, I., Grarup, N., Racimo, F., Bjerregaard, P., Jørgensen,

M.E., Korneliussen, T.S., Gerbault, P., Skotte, L., Linneberg, A., et al. (2015).

Greenlandic Inuit show genetic signatures of diet and climate adaptation. Sci-

ence 349, 1343–1347.

Galinsky, K.J., Bhatia, G., Loh, P.R., Georgiev, S., Mukherjee, S., Patterson,

N.J., and Price, A.L. (2016). Fast principal-component analysis reveals conver-

gent evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 98,

456–472.

Gudbjartsson, D.F., Helgason, H., Gudjonsson, S.A., Zink, F., Oddson, A., Gyl-

fason, A., Besenbacher, S., Magnusson, G., Halldorsson, B.V., Hjartarson, E.,

et al. (2015). Large-scale whole-genome sequencing of the Icelandic popula-

tion. Nat. Genet. 47, 435–444.

Huang, R.P., Ozawa, M., Kadomatsu, K., and Muramatsu, T. (1993). Embigin,

a member of the immunoglobulin superfamily expressed in embryonic cells,

enhances cell-substratum adhesion. Dev. Biol. 155, 307–314.
Cell 175, 347–359, October 4, 2018 357

https://doi.org/10.1016/j.cell.2018.08.016
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref1
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref1
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref2
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref3
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref4
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref5
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref5
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref5
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref6
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref7
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref8
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref8
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref9
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref10
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref11
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref12
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref13
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref13
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref14
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref15
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref16
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref17
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref18
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref19
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref20
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref20
http://refhub.elsevier.com/S0092-8674(18)31032-8/sref20


Jiang, F., Ren, J., Chen, F., Zhou, Y., Xie, J., Dan, S., Su, Y., Xie, J., Yin, B., Su,

W., et al. (2012). Noninvasive Fetal Trisomy (NIFTY) test: an advanced nonin-

vasive prenatal diagnosis methodology for fetal autosomal and sex chromo-

somal aneuploidies. BMC Med. Genomics 5, 57.

Karagoz, E., Ulcay, A., Tanoglu, A., Kara, M., Turhan, V., Erdem, H., Oncul, O.,

and Gorenek, L. (2014). Clinical usefulness of mean platelet volume and red

blood cell distribution width to platelet ratio for predicting the severity of hepat-

ic fibrosis in chronic hepatitis B virus patients. Eur. J. Gastroenterol. Hepatol.

26, 1320–1324.

Kent,W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M.,

and Haussler, D. (2002). The human genome browser at UCSC. Genome Res.

12, 996–1006.

Korneliussen, T.S., Albrechtsen, A., and Nielsen, R. (2014). ANGSD: analysis of

next generation sequencing data. BMC Bioinformatics 15, 356.

Kothapalli, K.S.D., Ye, K., Gadgil, M.S., Carlson, S.E., O’Brien, K.O., Zhang,

J.Y., Park, H.G., Ojukwu, K., Zou, J., Hyon, S.S., et al. (2016). Positive selec-

tion on a regulatory insertion-deletion polymorphism in FADS2 influences

apparent endogenous synthesis of arachidonic acid. Mol. Biol. Evol. 33,

1726–1739.

Landrum, M.J., Lee, J.M., Riley, G.R., Jang, W., Rubinstein, W.S., Church,

D.M., and Maglott, D.R. (2014). ClinVar: public archive of relationships

among sequence variation and human phenotype. Nucleic Acids Res. 42,

D980–D985.

Lee, Y.N., Malim, M.H., and Bieniasz, P.D. (2008). Hypermutation of an ancient

human retrovirus by APOBEC3G. J. Virol. 82, 8762–8770.

Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T.,

O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al.; Exome

Aggregation Consortium (2016). Analysis of protein-coding genetic variation

in 60,706 humans. Nature 536, 285–291.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery,

association mapping and population genetical parameter estimation from

sequencing data. Bioinformatics 27, 2987–2993.

Li, H. (2015). FermiKit: assembly-based variant calling for Illumina resequenc-

ing data. Bioinformatics 31, 3694–3696.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing

Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioin-

formatics 25, 2078–2079.

Li, Y., Sidore, C., Kang, H.M., Boehnke, M., and Abecasis, G.R. (2011).

Low-coverage sequencing: implications for design of complex trait associa-

tion studies. Genome Res. 21, 940–951.

Liang, Z., and Ma, Z. (2004). China’s floating population: new evidence from

the 2000 Census. Popul. Dev. Rev. 30, 467–488.

Liang, Z., and White, M.J. (1996). Internal migration in China, 1950-1988.

Demography 33, 375–384.

Loh, P.R., Tucker, G., Bulik-Sullivan, B.K., Vilhjálmsson, B.J., Finucane, H.K.,
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Xun Xu

(xuxun@genomics.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All participants were recruited via the non-invasive fetal trisomy test at BGI between year 2012 and 2013 (Zhang et al., 2015). They

underwent pretest counseling and filled in informedwritten consent before blood sampling. The studywas reviewed and approved by

the Institutional Review Board of BGI (BGI-IRB17088) in strict compliance with regulations regarding ethical considerations and per-

sonal data protection.

The geographic locations of the participants were provided in an anonymous way via the first six digits of the resident identity

card number, indicating birth place information of the participant. Year of birth and the age of the participants were obtained from

the written informed consent. The age distribution of 137, 984 participants suggests a bimodal distribution with peak for birth-

years of 1977 and 1984 and ages 28 and 35 (Figure S4K-L). The bimodal distribution is likely related to China’s first and second

child policy and affected by changes to the clinical guidelines for undertaking the NIPT test, where all pregnant women (rather

than only high-risk pregnant women) are recommended to take the NIPT test. The height and weight measurements were

recorded when the blood sample was taken in the hospital. The BMI is calculated using the standard formula ‘‘weight (kg) /

height2 (m2).’’

Relative fetal fraction can be estimated accurately for a participant if the gender of the child is male based on the proportion of

reads that map to Y chromosome relative to the reads that map to the whole genome. Using this proportion, we estimate that the

fetal fraction is approximately 3.5% to 30% among all participants, with a median of 8%.

The status of chromosomal aneuploidy was detected using a method we previously developed for screening of fetal chromosomal

aneuploidy (Jiang et al., 2012). In addition, both the participant, and if available, the father, reported their karyotype status to the hos-

pital. We removed participants with sequencing error rate greater than 1% (n = 3,278) and with potential abnormal chromosomal

aneuploidy detected either via the participant’s report or detected using the read coverage method (n = 502) from further analyses,

resulting in 141, 431 participants consisting of 118, 576 participants with 35bp read length and 22, 855 participants with 49bp read

length.
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METHOD DETAILS

Sequencing and QC
Details of the sequencing protocol were published previously in Zhang et al. (2015). In brief, within 8h of blood collection, plasma was

extracted from whole blood after two turns of centrifugation. The plasma samples (n = 145, 211) were subsequently subjected to

library construction, sample quality control and 36-cycle or 50-cycle single-end multiplex sequencing on Illumina Hiseq 2000 plat-

form. The reads were trimmed to 35bp and 49bp before bioinformatic analysis. Filtering of poor quality reads was carried out using

SOAPnuke (https://github.com/BGI-flexlab/SOAPnuke). A readwas removed if it containedmore than 30% low quality bases (Q% 2)

or N bases. In general, each participant was whole-genome sequenced to 5-10 million cleaned reads, representing a sequencing

depth around 0.06x �0.1x.

Medium depth sequencing of 40 participants
With informed consent, we sequenced 40 participants out of the total 141, 431 participants using the Hiseq X10 system at a medium

depth of 15x.We aligned the reads to the same hg19 human reference genome using bwa-mem (Li and Durbin, 2009) and applied the

GATK multi-sample best practice (DePristo et al., 2011) to call and genotype SNPs for the 40 participants. The SNP calls and geno-

type results were used to benchmark the SNP calling performance using the ultra-low depth sequencing data as well as the genotype

imputation accuracy.

Alignment of reads against hg19 and definition of accessible region
For each participant, the cleaned reads were aligned against the hg19 human genome reference with bwa, using the single-end read

alignment option (Li and Durbin, 2009). Potential PCR duplicates were removed using samtools rmdup (Li et al., 2009). The indel

realignment and base quality recalibration modules in GATK were applied to realign the reads around indel candidate loci and to re-

calibrate the base quality (DePristo et al., 2011). Finally, the alignment files were stored in the standard CRAM format. The alignment

of all participants was carried out in the Batch Compute system in Aliyun cloud parallelizing 2000 jobs in a batch (�24 hours per job)

(https://github.com/aliyun/aliyun-openapi-java-sdk/tree/master/aliyun-java-sdk-batchcompute). Completion of the whole align-

ment process took around one week.

After alignment,QCstatisticswerecomputedusing the stats function implemented in samtoolswhichmeasures sequencingerror rate

as theproportionofbases thatdiffer fromreferencebaseatbasepositions, i.e., themismatch rate. Themediansequencingerror ratewas

estimated to be 0.3%. Subsequently, we used the samtools depth to estimate the overall coverage of readswithmapping quality > = 30

andbaseswithbasequality>=20.Readsorbaseswithquality lower than this thresholdwerenot included inanyof the followinganalysis.

We compared the coverage to themappability uniqueness (wgEncodeDukeMapabilityUniqueness35bp.bedGraph) aswell as gene and

repeat density information from the UCSC database (Kent et al., 2002) (Figure S1D).

Considering potential errors in alignment of short single-end reads, we defined an accessible region for variation calling, population

genetics and association mapping analysis. We defined the accessible region as follows: 1) regions that are not in the 35-kmer prob-

lematic alignment bed file provided by Heng Li (https://github.com/lh3/sgdp-fermi/releases/download/v1/sgdp-263-hs37d5.tgz).

Those regions in the hg19 reference genome were detected by Fermi assembler (Li, 2015) as difficult to map uniquely using a

35bp kmer unit sequence. This filter removed 897,319,085 bp hg19 sequence; 2) regions with a mappability uniqueness score equal

to one according to wgEncodeDukeMapabilityUniqueness35bp.bedGraph in UCSC. This filter additionally removed 6,459,019 bp

hg19 sequence; 3) regions where the sequencing depth was between 3000 and 30,000. An additional 4,340,936 bp are excluded

in this step. The final length of accessible region in hg19, including the 22 autosomal chromosomes and the X chromosome is

2,128,184,806 bp.

Variant discovery and allele frequency estimation
We applied a maximum likelihood approach to identify polymorphic sites and infer allele frequencies (S. Liu, unpublished data).

We adopted a single-read sampling strategy, where we sampled only one read for each variant candidate site if there were more

than one read. This method ensured that, for each site, all reads derived from different individuals and the allele frequency spectrum

is therefore not biased due to existence of fetal DNA in the sample. This maximum likelihood framework is much faster than a

representation using diploid genotype likelihoods (DePristo et al., 2011; Li, 2011). The mathematical derivation has been detailed

in the ‘‘QUANTIFICATION AND STATISTICAL ANALYSIS’’ section in the manuscript.

Annotation
Annotation of the genes mentioned in the manuscript and the annotation of the existence of the variants in database such as dbSNP,

GnomeAD, 1KGP was carried out using Variant Effect Predictor (McLaren et al., 2016).

Imputation
We employed STITCH (version 1.2.7) (Davies et al., 2016) to impute genotype probabilities for all 141,431 individuals in a five mega-

base window with a 250K buffer assuming 10 ancestral haplotypes. The key parameter K (number of ancestral haplotypes)

was decided based on tests over a 5Mbp region in chr3 (chr3: 180000000-185000000) via useful discussions with the STITCH author
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Robert W Davies. Allele frequency information from the Chinese population (CHB+CHS+CDX, n = 301) in the 1KG impute2 reference

panel was used for the initial values for the EM optimization of the model parameters. 607 jobs were parallelized in the Tianhe 2 su-

percomputer in Guangzhou city.

The imputed loci are a target of 8.16 million known polymorphic sites in 22 autosomal chromosomes and chrX with a 1KG East

Asian allele frequency > = 0.01. All the loci recorded in the GWAS catalog are also included for imputation.

For each of the imputed site, there is an IMPUTE2-style info score (Marchini and Howie, 2010) and a P value for violation of Hardy

Weinberg equilibrium (HWE-pvalue in short) (Wigginton et al., 2005). We used info score greater than 0.4 and HWE-pvalue smaller

than 10�6 since the remaining variants has greatest power and good replication rate for height and BMI association test.

Principal component analysis
For the PC analysis, we restricted ourselves to known variants with minor allele frequency greater than 0.05 in the data.We continued

to use the single read sampling strategy. To compute the covariance between individuals i and j for M loci, we used

Ci;j =
1

M

XM
m= 1

�
hi
m � fm

��
hj
m � fm

�
fmð1� fmÞ
where fm is the minor allele frequency and hi is the haploid g
m enotype coded as either 0 or 1 for the major and minor allele,

respectively.

Using the above formulas, we parallelized the distance and the covariance matrix computation in 90 nodes from the Aliyun ODPS

system and obtained the full matrix of 141,431 individuals in a few days. We applied the Spectra R package (https://cran.r-project.

org/web/packages/RSpectra/index.html) to perform the decomposition of the covariance matrix.

Finally, we visualized the top three principal components and colored the points according to the administrative divisions, the

ethnic groups, and also the read length and error rate.

We have carried out several principal component analyses to answer different questions using theworkflowdescribed above. First,

we carried out a PCA for all 141, 431 participants to identify themain principal components (Figures S3A–S3D). After noticing that the

first principal component reflects read length and the third reflects the estimated sequencing error rate (measured using the stat func-

tion in samtools), we only used the 96,880 participants with read lengths of 35bp and sequencing error rate smaller than 0.00325 for

further population genetic analysis (Figure 2). In particular, for the PCA in the Han Chinese population (Figures S3E and S3F), we

excluded participants that did not report their ethnicity (although a large majority of them are probably Han). We only used the 45,

387 participants who reported Han ethnicity to understand population structure of the Han.

F3-statistic and private allele frequency analysis
To quantify divergence between populations we use the outgroup F3 statistic, which is a measure of drift time between two pop-

ulations (Raghavan et al., 2014). The F3 statistic is highly influenced by common alleles, that tend to be older, and we noticed that

F3 statistics between CEU and ITU 1KG samples, and samples from each of the Chinese administrative divisions, were highly

correlated due to the sharing of ancestry between the CEU and ITU populations after their separation from East Asian popula-

tions (Figure not shown). We therefore also measured genetic relatedness using a measure based on alleles that are private to

either the African (YRI), east Asian (CHB), South Asian (ITU) or Europeans (CEU) 1KG sample. Private alleles are defined as those

that were polymorphic in one group and fixed in the other groups. There were in total 3, 485, 371 and 4, 324,376 private alleles in

the CEU and ITU samples respectively. We further applied a filter, using the private alleles that were common in one group with a

MAF > 5% and obtained in 66,700 and 45,536 private variants in the CEU and ITU samples, respectively. Those common private

variants were used to compute the private allele frequency defined below. We assume that the proportion of allele sharing of

these private alleles with any of the administrative division, should be informative regarding genetic exchange at a more recent

timescale.

For each administrative division we calculated the fraction of alleles in the NIPT dataset that matched the private allele found in

population K in the 1KG. We denote the number of sites that contains an allele that is private to population, K, as Mk. For each

site, s, that contains a private allele for population K, we count the number of alleles that match the private allele, ns, and normalize

by the total number of alleles Ns. The private allele frequency for population K is defined as

PAFk =

PMk

s= 1nsPMk

s= 1Ns
Standard errors were estimated using a 5Mb weighted block jack
knife where the weights are the number of sites with private alleles

within the block.

Detection of selection across PC coordinates
To detect the most extremely differentiated variants, we use a method based on finding deviations from the patterns predicted using

the first components of a PCA analysis. We have adapted the FastPCA statistic (Galinsky et al., 2016) to work on covariance matrix
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based on PCA (using the NIPT sequencing data). Assuming the eigenvectors obtained by PCA capture the structure in the data in the

absence of selection, for each SNP, we use Equation (11) in Galinsky et al. (2016) to calculate a p value associated with deviations

from the genomic pattern. The resulting p values were visualized using a Manhattan plot.

Detection of clinvar pathogenic variants displaying significant allele frequency differentiation
We investigated allele frequency differences among the three populations defined by the three latitudinally separated geographic

divisions in a total of 3,238 bi-allelic potentially pathogenic variants with a clinical significance level of 5 from the total of 246,385 var-

iants in clinvar database (Landrum et al., 2014) (URL: ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20170404.vcf.gz). We

note that even for the pathogenic variants with clinical significance level of 5, some of them have high allele frequency greater

than 1% in both our dataset and the 1KG population. We counted the number of risk and non-risk alleles (B) for each of the North,

South and Central populations using the formula

Cb =
XNb

i = 1

�
1� 10

�qb
10

�

b˛fA;C;G;Tg
where C refers to total allele count of b, q refers to the base qu
b b ality of the observed base b. For each variant, a two-tailed p value

using Fisher’s exact test was calculated for the 2x3 table with data from the 2 alleles and 3 regions.

For each of the pathogenic variants, as well as for all other variants throughout the genome, we estimated allele frequencies using

BaseVar. The risk allele frequency of position j is defined as Rj. We frequency-matched random SNPs from the whole genome data

with SNPs in clinvar by, for SNP j in clinvar, randomly selecting 100,000 variants from the non-clinvar variants within a frequency

range of [0.9Rj, 1.1Rj]. We estimated the rank and percentile of the pathogenic variant comparing to the 100,000 variants. We re-

ported and visualized the top eight loci with a p value retrieved from the Fisher’s exact test was less than 10e-6, and the p value

from the comparison to non-clinvar variants was less than 5e-3.

Identification of genetic variants significantly associated with a trait
We used the score test (Korneliussen et al., 2014) implemented in Angsd (Korneliussen et al., 2014) to detect the association signal

between the imputed genotype probabilities and phenotypes, followed by a linear regression for quantitative trait or logistic regres-

sion for qualitative trait to compute the effect size of the top SNPs. For height, we applied the top five principal components, the

maternal age and the sex of the fetus as covariates. For BMI, we additionally included the gestational age of the fetus as a covar-

iate. We note that the BMI phenotype in the NIPT cohort is not only related to the mothers’ non gestational weight but also related

to gestational weight gain including the fetus’s weight. We are mostly interested in the genetic effects on the maternal phenotype in

this study and therefore, we have used the gestational age and the sex of the fetus as covariates to account for the fetal growth

rate and the effect of sex. Even so, there may be some residual variance in the BMI phenotype caused by differences in fetal

growth rate. For maternal age, we used the top five principal components and the sex of the fetus as covariates. For the rest

of the phenotypes including twins and virus integration and infection, we applied the same covariates as height. Independent

loci were defined as significant variants clustered in a 1Mbp window. The lead SNP was defined as the SNP in the 1Mbp window

that has most significant, i.e., smallest p value. The conditional test module in SNPtest (Marchini and Howie, 2010) was used

to estimate the number of independent signals for each independent loci. Finally, locuszoom (Pruim et al., 2010) was applied to

visualize the loci. The reported loci were determined from the conditional test after the single marker analysis using a significance

threshold P value % 5 3 10�8.

The genomic inflation factor, GC lambda, attenuation ratio, LD score regression intercept and the SNP heritability were estimated

using the LD score regression approach (Bulik-Sullivan et al., 2015).

Replication of significant loci
For replication, we compared all the variants reaching the significance threshold to three independent studies- the China Kadoorie

Biobank (CKB cohort) (Chen et al., 2011), the recent Giant meta-analysis (Yengo et al., 2018, bioRxiv) and the UK Biobank (Ben

Neales’s website). The CKB cohort has measurements of height and BMI data and has chip-genotyped 32,000 Chinese participants

with imputation into the 1000 genomes Phase reference panel. The GC lambdas from the CKB association test using BOLT-LMM

(Loh et al., 2015) were 1.10 and 1.17, respectively, for height and BMI. The GIANT and the UK Biobank summary statistics consist

of 2.3 million and 10 million SNP markers, respectively. For some associated loci, the lead SNP is not present in the test. For

replication purpose, after ascendingly ranking the SNPs by p value, we chose the first SNP present in the test data as the proxy

SNP. In almost all cases the p values and effect sizes of the lead SNPs are similar to the p value of the proxy SNPs. When proxy

SNP instead of the lead SNP was used for the replication, we marked it cleary in the result.
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We defined a locus as replicated if the lead SNP or the proxy SNP 1) has a p value less than 0.05 divided by the number of loci

(for height, n = 48; for BMI, n = 13) 2) has the same directionality of the effect, in at least one of the CKB, the GIANT or the UK Biobank

test set. We note that the genomic inflation factor is high in both the GIANT and the UK Biobank (qq plot not shown).

The GWAS catalog database (Welter et al., 2014, e87_r2017-02-20) defines known and novel loci. The b38 coordinates was trans-

ferred to the b37 coordinates using the liftover script fromUCSC (http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/liftOver).

Viral sequence analysis
We applied BLAST (Altschul et al., 1990) to align the reads that did not map to the human reference genome (hg19+human decoy

sequences) to the NCBI viral reference sequence database (Sayers et al., 2009) (ftp.ncbi.nih.gov/refseq/release/RefSeq-

release84/viral/viral.2.1.genomic.fna.gz). For each read, we kept the best alignment with smallest e-value. Only reads with an

evalue < 1e-5, identity > = 97 and alignment length > = 32bp were counted as a hit. After removing alignments to bacteriophages,

we found that out of the 138,882 samples analyzed, 48,298 samples (34.8%) have at least one viral hit and 11,351 samples (8.2%)

have at least two significant hits mapped to the viral reference database. In Figure 5, to reduce false positive, we defined individuals

with at least two significant hits aligned to the same virus as carriers of that virus. We then carried out prevalence and abundance

analysis of each virus using the top viral hit for each read. For prevalence and abundance analysis, we only used the individuals

with at least two hits for a specific virus. Virus abundance was calculated by the following equation adapted from Moustafa

et al. (2017):

Abundance=

2x
number of reads mapped to viral genome

virus genome size
number of reads mapped to human genome

human genome size
Viruses with multiple strain entries in RefSeq were aggregated f
or high homology between entries and ease of graphical display.

These viruses include: Anellovirus (TTV), HBV, HHV-6A, HHV-6B, HHV-5, Influenza, etc. For virus sequencing coverage analysis,

we aggregated the read depth of all the individuals with mapping quality > 0 for each virus.

QUANTIFICATION AND STATISTICAL ANALYSIS

Maximum likelihood estimation of allele frequency
Likelihood Function for a single site

For N unrelated individuals with a single read covering the position, the likelihood function for the read data Di, for a single variant

candidate site in individual i, of the allele frequency p = ðpA;pC;pG;pTÞ, is defined as:

LðpÞ=
YN
i = 1

PðDi jpÞ=
YN
i = 1

X
b˛fA;C;G;Tg

pðb jpÞpðDi jbÞ (1)
where pðb jpÞ=pb and the genotype likelihood assuming a haplo
id model is pðDi jbÞ = f1� εi if Di = b and εi=3; if Disb. εi corre-

sponds to the GATK corresponds to the GATK-recalibrated error rate converted from the PHRED-scale base quality.

Optimization

We obtain the maximum likelihood estimate bp = argmaxpLðpÞ using the EM algorithm with starting value computed by the observed

allele frequency:

pb =

P
Di =b

N
(2)
In the E step, we compute the posterior probability of allele b for
 individual i at a site j as one of the four A/C/G/T bases:

Pðb jDiÞ= pðb jpÞpðDi jbÞP
b
0˛fA;C;G;Tgpðb0 jpÞpðDi jb0 ÞÞ (3)
We compute the updated allele frequency p’ in the M step as
p
0
b =

PN
i =1Pðb jDiÞ

N
(4)
When the change in the maximum likelihood is less than 0.001, w
e terminate the algorithm.

Decision of allelic type and confidence of SNP calling: Likelihood Ratio Test

Formulae (1) – (4) can be used for estimation of allele frequencies of all four nucleotides simultaneously, and may result in tetra-allelic

and tri-allelic variant calls. We will use this formulation for SNP calling and for identifying potential tri- and tetra-allelic loci. Denote the
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likelihood value from the four-allelic model in Equation (1) as f4. We iteratively set the allele frequency of one of the four nucleotides

to zero to obtain models of tri-allelic loci. Let bf3ðpx = 0Þ denote the maximum likelihood value when the frequency of allele x is con-

strained to be zero. We then compute a log likelihood ratio statistic as:

LRT4vs3 = � 2log

 bf3ðpx = 0Þbf4
!

(5)
The tri-allelic model is nested within the tetra-allelic model and, th
erefore, the distribution of the LRT4vs3 statistic asymptotically fol-

lows a chi-square distribution with one degree of freedom, under the assumption of a tri-allelic locus. If the p values of one of the four

LRT4vs3 test are significant (< 10�6), the variant will be classified as a tetra-allelic loci. If not, we move on to the test a model of a tri-

allelic locus versus a bi-allelic locus, where x if the bf3ðpx = 0Þ is the allele with minimum likelihood (which results in maximum p value

out of LRT4vs3) was set as the alternative-hypothesis and the reduced hypothesis is bf2ðpx = 0;py = 0Þ where py is the allele frequency

for allele y.

LRT3vs2 = � 2log

 bf2�px = 0;py = 0
�

bf3ðpx = 0Þ

!
(6)
Again, the distribution of LRT3vs2 asymptotically follows a chi-squa
re distribution with one degree of freedom under the hypothesis of

a bi-allelic locus. If the maximum p value out of the three LRT3vs2 is significant, the variant will be classified as a tri-allelic variant.

Otherwise, we continue to test the bi-allelic versus mono-allelic assumption, as defined in the equation below, with y being the allele

with the highest p value

LRT2vs1 = � 2log

 bf1�px = 0;py = 0;pz = 0
�

bf2�px = 0;py = 0
� !

(7)
Formula (8) is also used to quantify the confidence of the SNP ca
ll. We keep variants with p values less than 10�6.

Note that ourmethod identifiesmulti-allelic variants. However, sincewe don’t have sufficient validation of the performance for such

variants, we focus on reporting results for bi-allelic loci.

Variant quality score recalibration

�32 million raw variants were obtained using a p value less than 10�6 based on the maximum likelihood model in the accessible re-

gion (Table S1). However, this set of SNPs may contain false positives due to miscalculated quality scores, alignment errors, or other

technical issues such as contamination. We therefore applied a Bayesian Gaussian mixture model, similar to the VQSR model in

GATK (DePristo et al., 2011) to assign each variant candidate a Phred-scaled probabilistic score (in short, VQSR score) indicating

the probability that the variant is a truly polymorphic variant. The higher the VQSR score, the higher probability that the variant candi-

date is a true polymorphic variant. The Gaussian mixture model was established by learning technical features of a training set that

consists of variant likely to be real. In our case, the training set was defined as a subset of the common known variants (n = 50K was

randomly chosen). Features include the Fisher exact test statistic for strand bias, sequencing depth, indel density in a 30bp window

centered around the variant candidate, and the raw variant quality score using a maximum likelihood model described above. The

same likelihood function and expectation and maximization process as that reported in the GATK framework (DePristo et al., 2011)

was implemented except that we used prior probability 50% and 50% for all the variants.

The transition versus transversion (Ti/Tv) ratio is high for the raw call set (maximum 3.4 for known variants and 8.9 for novel variants)

and decreases as the filtration threshold of VQSR score increases. The final filtration threshold of VQSR score is decided to be 35,

which suggests a Ti/Tv ratio of 2.2 for known variants and of 2.4 for novel variants and a sensitivity of 85% for the common known

variants used for training (Figure S2A).

DATA AND SOFTWARE AVAILABILITY

Any uploading and sharing of individual genetic data from this project is not allowable according to a review by the Human Genetic

Resources Administration of China (HGRAC) based on the regulations documented in the Interim Measures for the Administration of

Human Genetic Resources.

However, we havemade themaximal efforts to ensure that we canmake as detailed as possible summaries of the data available to

other researchers, including allele frequencies and GWAS summary statistics. The summary statistics are available at https://db.

cngb.org/cmdb/. Researchers who wish to gain access to the data are required to fill in a simple application form and send an email

to the bigdata@genomics.cn. After the applicant’s identity is verified, they will be given the account and password to access the allele

frequency information and other summary statistics data. This process takes no longer than five weekdays. This verification process

is necessary in order to adhere to the Chinese regulations.
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Supplemental Figures

Figure S1. Geographic Distribution of 140,000 Participants over 34 Administrative Divisions in China and Sequencing Depth, Related to

Figure 1, Table S1, and the STAR Methods

(A) Geographic distribution of 140K participants over 34 administrative divisions in China. Color and number in legend indicate the number of participants.

Participants from three divisions including Hong Kong, Macau and Taiwan are not involved in the study.

(B) Integrated sequencing depth of all the study participants over accessible and unaccessible regions.

(C) Sequencing depth per individual by chromosomes.

(D) Integrated sequencing depth over the 22 autosomal and the X chromosomes. Sequencing depth for participants with 35bp read length, 49bp read length and

a summation of both groups are shown in green, blue and red, respectively.



Figure S2. Quality Measurement of Variation Calling and Imputation Accuracy, Related to Figure 1, Table S1, and the STAR Methods

(A) Changes in Ti/Tv ratio and the ratio of the remained variants as a function of the increasing filtration threshold on variant recalibration score. In the legend,

‘‘positive’’ and ‘‘negative’’ refers to the status of variants selected as the positive set and negative set in the training process. ‘‘All’’ refers to the status of all

variants.

(B-E) Upper bound false positive counts using variants with > = 2 alleles in 40WGS validation data. ‘‘All,’’ ‘‘Known’’ and ‘‘Novel’’ variants refers to all the variants,

variants known in dbsnp147 and variants not known in dbsnp147. False calls are those that are called by BaseVar from the 140K NIPT data and have at least two

alternative alleles in the low coverage NIPT sequencing data of 40 validation participants but are not identified as variants in the high coverage sequencing data of

those same individuals.

(F) Imputation accuracy for all the variants per individual as a function of fetal fraction.



Figure S3. Principal Component Analysis and Sharing of Ancestry with Reference Populations, Related to Figure 2 and STAR Methods

(A–D) Principal component analysis for the full sample set (n = 141, 431). (A) Distribution of eigenvalue for the top eight principal components. (B). PCA colored by

read length suggests the first principal component is the batch effect caused by differential mapping of different read length. (C). PCA colored by three latitudinal

geographical regions (North, Central and South) suggests the second principal component reflects genetic differentiation across latitude. (D). PCA colored by

sequencing error rate suggests the third principal component likely corresponds to the error rate.

(E and F) Principal component analysis of the self-reported Han Chinese (n = 43, 387). (E) Geographic locations of the Han. Divisions belong to the ‘‘North,’’

‘‘Central’’ and ‘‘South’’ regions defined by the Chinese government are colored as ‘‘’’Green,’’ ‘‘Red’’ and ‘‘Blue.’’ (F) Visualization of the top two principal

components. Colors correspond to their digital geographical information in Panel A. Solid and dashed ellipses line refers to 95% confidence interval of the PC

distributions for individuals from the three geographical regions assuming a multivariate t-distribution or a multivariate normal distribution, respectively.

(G–K) Allele sharing between Han Chinese in each of the 31 administrative divisions with populations in the 1000 Genomes project by the F3 statistic. CHB, CDX,

CHS, JPT and KHV refers to Han Chinese in Beijing, Southern Han Chinese, Chinese Dai in Xishuangbanna, Japanese in Tokyo and Kinh in Ho Chi Minh City,

respectively.



Figure S4. Quality Evaluation in Genome-wide Association Studies, Related to Figure 4, Tables 1 and 2, and STAR Methods

(A and B) Distribution of mother’s height and body mass index for the 61, 717 participants with height and BMI records.

(C and D) QQ-plot for height and BMI using all 2.1 million variants with Info Score > 0.4, HWE p value < 10-6 are shown in black. Results excluding all loci known to

be associated with the trait is shown in gray line.

(E–K) Correlation of effect size of genome-wide significant variants between discovery set (NIPT) and three test sets (Giant, UK Biobank and CKB) for height(E-(G)

and BMI(H-K). Linear regression was performed and the fitting line is shown in red.

(L) Distribution of the age of the mother in the year when taking the test. The four number ‘‘13,’’ ‘‘28,’’ ‘‘35,’’ ‘‘48’’ refer to the minimum, two modes of the binomial

distribution and maximum of age.

(M) QQ-plot for maternal age.

(N) QQ-plot for twin pregnancy.



Novel loci associated with height

Novel loci associated with BMI

Novel loci associated with maternal age and twin pregnancy

A B C

D E F

G H I

J K L

LINC01441 CBLN4

0

2

4

6

8

10 rs59655400

0.2

0.4

0.6

0.8

r2

LOC101927796

LOC102723578

CBLN4 MC3R

54 54.2 54.4 54.6 54.8
Position on chr20 (Mb)

LOC101054525 TRPC6

0
2
4
6
8
10
12 rs9734043

0.2

0.4

0.6

0.8

r2

ARHGAP42

TMEM133

PGR

LOC101054525

TRPC6

MIR3920

100.8 101 101.2 101.4 101.6
Position on chr11 (Mb)

PLD5 LINC01347

0

2

4

6

8

10

rs2491863

0.2

0.4

0.6

0.8

r2

PLD5 LINC01347

CEP170

SDCCAG8

242.6 242.8 243 243.2 243.4
Position on chr1 (Mb)

MAST2

0
2
4
6
8

10
rs7520050

0.2

0.4

0.6

0.8

r2

TESK2

CCDC163P

MMACHC

PRDX1

AKR1A1

NASP

CCDC17

GPBP1L1

RPS15AP10

TMEM69

IPP MAST2

PIK3R3

TSPAN1

POMGNT1

LURAP1

RAD54L

LRRC41

UQCRH

NSUN4

FAAH

FAAHP1

46 46.2 46.4 46.6 46.8
Position on chr1 (Mb)

LINC00261

0

2

4

6

8

10

rs1203887

0.2

0.4

0.6

0.8

r2

LOC100270679

LOC101929663

LOC284788 LINC00261

FOXA2

LINC01384

SSTR4

THBD

22.2 22.4 22.6 22.8 23
Position on chr20 (Mb)

ARHGEF12

0

2

4

6

8
10

rs894839

0.2

0.4

0.6

0.8

r2

TRIM29 OAF

POU2F3

LOC649133

TMEM136

ARHGEF12

GRIK4

120 120.2 120.4 120.6 120.8
Position on chr11 (Mb)
UBQLN2 LINC01420

0

2

4

6

8

10
rs1489960

0.2

0.4

0.6

0.8

r2

KLF8 UBQLN2 LINC01420

UQCRBP1

SPIN3 SPIN2B

SPIN2A

56.4 56.6 56.8 57 57.2
Position on chrX (Mb)

STRBP

0
2
4
6
8

10
rs10818797

0.2

0.4

0.6

0.8

r2

OR5C1

OR1K1

PDCL

RC3H2

SNORD90

ZBTB6

ZBTB26

RABGAP1

GPR21

MIR600HG

MIR600

STRBP CRB2

DENND1A

MIR601

MIR7150

125.6 125.8 126 126.2 126.4
Position on chr9 (Mb)

MIR325HG FGF16

0
2
4
6
8

10
12
14

rs4892720

0.2

0.4

0.6

0.8

r2

LOC101928469

MIR384

FGF16

75.8 76 76.2 76.4 76.6
Position on chrX (Mb)

SCMH1−FOXO6

0
2
4
6
8
10

-lo
g 1

0(
p−

v a
lu

e)

rs16828019

0.2

0.4

0.6

0.8

r2

BMP8B

TRIT1

MYCL

MFSD2A

CAP1

PPT1

RLF

TMCO2

ZMPSTE24

COL9A2

SMAP2

ZFP69B

ZFP69

EXO5

ZNF684

RIMS3

NFYC−AS1

NFYC

MIR30E

MIR30C1

KCNQ4

CITED4

CTPS1

SLFNL1−AS1

SLFNL1

SCMH1

FOXO6

EDN2

HIVEP3

GUCA2B

GUCA2A

FOXJ3

RIMKLA

ZMYND12

PPCS

CCDC30

PPIH

YBX1

CLDN19

LEPRE1

C1orf50

40.5 41 41.5 42 42.5 43

NRG1

0

2

4

6

8
10

rs12056727

0.2

0.4

0.6

0.8

r2

NRG1

NRG1 IT1 NRG1 IT3

32 32.2 32.4 32.6 32.8
Position on chr8 (Mb)

HCN1 EMB

0
2
46
8

10
12
14

gwas
rs68853070.2

0.4

0.6

0.8

r2

6 genes
omitted

C7

MROH2B

C6

PLCXD3

OXCT1

OXCT1 AS1

C5orf51

FBXO4

LOC101926960

GHR

CCDC152

SEPP1

FLJ32255

LOC648987

ANXA2R

LOC153684

ZNF131

NIM1K

CCL28

C5orf34

NNT

FGF10

FGF10 AS1

LOC100506674

MRPS30

HCN1 EMB

PARP8

LOC100287592

LOC642366

ISL1

42 44 46 48 50
Position on chr5 (Mb)

Position on chr1 (Mb)

0
20
40

60

80
100

Recombination rate (cM/Mb)

0
20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination r ate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

0
20
40
60
80
100

Recombination rate (cM/Mb)

0

20

40

60

80

100

Recombination rate (cM/Mb)

-lo
g 1

0(
p−

v a
lu

e)
-lo

g 1
0(

p−
va

lu
e)

-lo
g 1

0(
p−

va
lu

e)

-lo
g 1

0(
p−

va
lu

e)

-l o
g 1

0(
p−

va
lu

e)
-l o

g 1
0(

p−
va

lu
e)

-lo
g 1

0(
p−

va
lu

e)

-lo
g 1

0(
p−

va
lu

e)
-lo

g 1
0(

p−
v a

lu
e)

-lo
g 1

0(
p−

va
lu

e)
-lo

g 1
0(

p−
v a

lu
e)

0

20

40

60
80

100

Recombination r ate (cM/Mb)

Figure S5. Locus Zoom Plot for Novel Association Loci, Related to Figure 4, Tables 1 and 2, and STAR Methods

Locus Zoom plots for height (A-F); BMI (G-I); maternal age (J-K); twin pregnancy (L). The rs number and P value of the most significant primary SNP were labeled

on top of the SNP. R2 LD estimated using 1KGP-CHN haplotypes between each SNP and the most significant SNP was color coded.



Figure S6. Extended Information for the Virome Spectrum in Plasma, Related to Figure 5 and STAR Methods

(A–C) Plasma virome not removing phage and low abundance participants. Shown are the coverage of the virus genome (A), prevalence (B) and the distribution of

abundance of the viruses per individual (C). Only the top 40 viruseswith greater than 10%genome coverage and among the highest rank of prevalence are shown.

(D) Medical records for participants with HBV infection (significant hits > = 2). Free/NA means no clinical information are available.

(E) QQ-plot for high abundance ciHHV-6A/B phenotype.

(F) QQ-plot for low abundance ciHHV-6A/B phenotype.
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Figure S7. Integrated Coverage from 138,882 Participants toward Virus Genome, Related to Figure 5 and STAR Methods

Reads with mapping quality equal to zero were excluded. Viruses with coverage were shown.


	Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese  ...
	Introduction
	Results
	Study Participants and Chromosomal Coverage
	Amount of Genetic Variations and Accuracy of Genotype Imputation
	Population Structure, Recent Population History, and Genetic Adaptations
	Phenotype-Genotype Associations of Multiple Complex Traits
	Circulating Viral DNA in Maternal Plasma

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Method Details
	Sequencing and QC
	Medium depth sequencing of 40 participants
	Alignment of reads against hg19 and definition of accessible region
	Variant discovery and allele frequency estimation
	Annotation
	Imputation
	Principal component analysis
	F3-statistic and private allele frequency analysis
	Detection of selection across PC coordinates
	Detection of clinvar pathogenic variants displaying significant allele frequency differentiation
	Identification of genetic variants significantly associated with a trait
	Replication of significant loci
	Viral sequence analysis

	Quantification and Statistical Analysis
	Maximum likelihood estimation of allele frequency
	Likelihood Function for a single site
	Optimization
	Decision of allelic type and confidence of SNP calling: Likelihood Ratio Test
	Variant quality score recalibration


	Data and Software Availability



